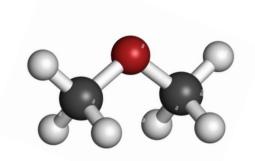
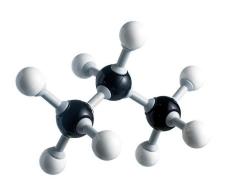


Jack Lewnard Program Director ARPA-E Jack.lewnard@hq.doe.gov




DME: The Tie that Binds the Electric, Gas, and Petroleum Grids

Meet Dimethyl Ether (DME)

	DME	Propane
Chamical formula	СЦО	СЦ
Chemical formula	C_2H_6O	C_3H_8
Boiling point (C)	-24	-42
Vapor pressure 25 C		
(kPA)	592	936
(PSI)	86	135

Compare Dimethyl Ether (DME)

	DME	Hydrogen	Methane
Energy Density (MJ/m³)			
Ambient conditions	59	11	36
Pipeline conditions (7 Mpa/1000 psi)	21,000	750	2400
Greenhouse gas warming potential	1.2 20-yr 0.3 100-yr	30-60 10-yr 10-40 20-yr	84 20-yr 25 100-yr

Dimethyl Ether: Universal Fuel

 Replace natural gas and propane for Residential/
 Commercial sectors
 8 EJ

- Gasoline precursor
- (or replace with propane/DME blend)18 EJ

Replace diesel6 EJ

Replace petroleum for chemicals 7 EJ

Replace natural gas for peakers 1 EJ

Making Low-Carbon Fuels

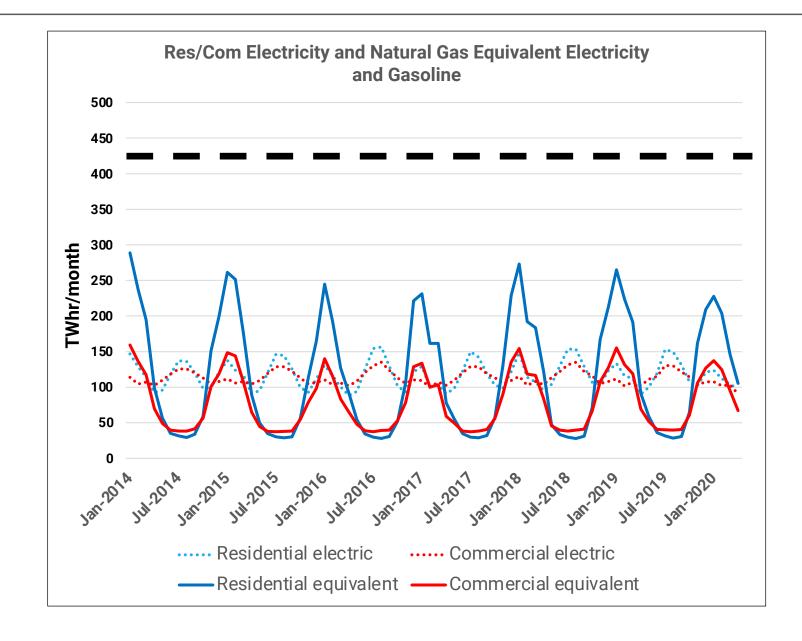
Candidate	Low-carbon Production Options
Electricity	Wind, solar, nuclear
Hydrogen	Electricity: Power-to-X
	Gray to blue from fossil sources
Renewable methane	H ₂ + "recycled" CO ₂
	Manure, biomass, waste
Dimethyl Ether (DME)	All of the above

How Much Will Green Cost You?

Production cost

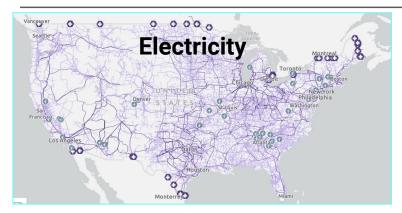
- + Delivery cost (>50% today)
- + End-use hardware cost

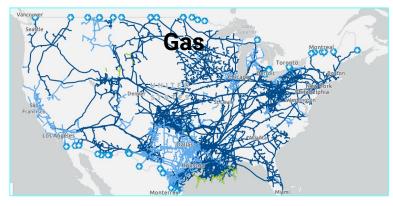
Your total cost

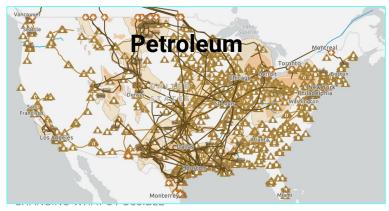


Delivery Deep Dive

Gasoline: 440 TWhr steady demand


Residential/Commercial Natural Gas: 400 TWhr winter peak


Residential/Commercial Electricity: 275 TWhr summer peak 200 TWhr winter peak



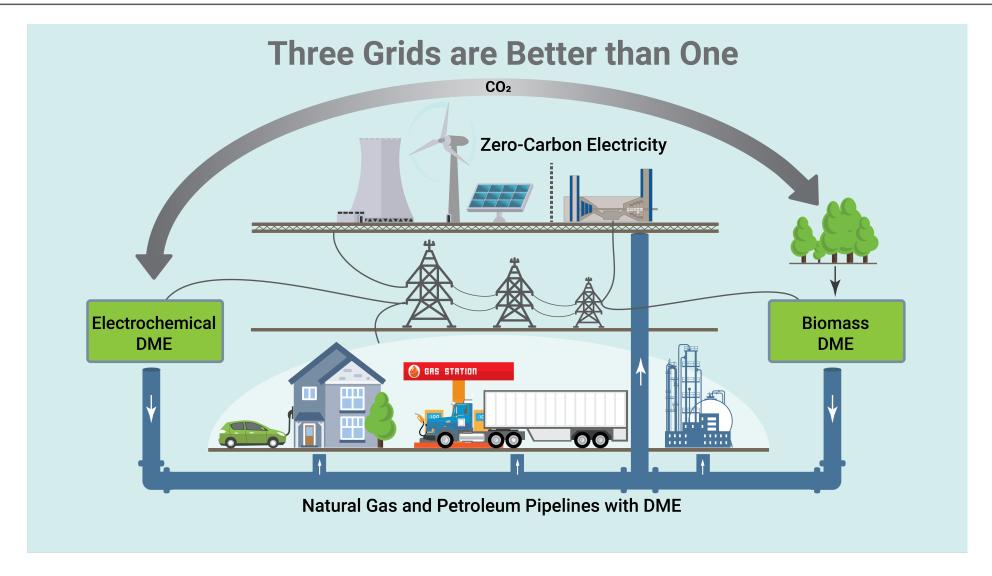
Three Energy Grids

- Similarities
 - ~200,000 miles interstate transmission
 - Millions of miles of smaller wires or pipes
- Differences
 - CAPEX
 - Electric grid CAPEX 4X higher than gas grid per MW delivered
 - Most vulnerable grid for natural disasters
 - Storage
 - Electric: Minimal capacity today; aspire to \$100/kW-hr
 - Petroleum: 1000 terminals, 7 EJ storage, <\$0.5/kW-hr
 - Latent Capacity
 - Gas grid has enormous latent capacity; under-utilized 99.5% of time, DME increases capacity 60%

What's **Your** Bottom Line?

5

Candidate	Make (\$/MW-hr)	Deliver (\$/MW-hr)	Use (8 EJ, heat, 24 EJ vehicles)
Electricity	\$40 including storage \$30 future?	\$100-250+ Expand electric grid >2X for heat + 2X for vehicles	Replace 75 MM water heaters/ furnaces; 270 MM vehicles
Hydrogen	\$120-200 today \$35 H2Shot	\$100-200+ Expand gas grid 3X for heat +3X for vehicles, modify pipelines and compressor stations	Replace 75 MM water heaters/ furnaces; 270 MM vehicles
Renewable methane	\$25-140 today \$25-100 future	\$35 No gas grid investment	Impact limited to heat; keep your furnace and water heat.
Dimethyl Ether (DME)	\$60-400 today Future??	\$35 Repurpose gas and petroleum grids with minimal investment	Keep your furnace, water heater, and vehicles



Final Thoughts

- Keep options open for energy carriers
 - DME is one of possibly many energy carriers that could play a role
 - Silver buckshot, not silver bullets
 - Markets can sort out the best and highest uses for low-carbon energy options
- System-level analysis: production, distribution, use
 - Environmental impacts
 - Cost implications
 - Repurposing existing infrastructure is also green

DME: The Tie that Binds the Electric, Gas, and Petroleum Grids

